

Thaxted Guildhall Town Street Thaxted Essex

Tree-ring Analysis of Oak Timbers

Martin Bridge and Cathy Tyers

Research Report Series no. 17/2021

Front Cover: Thaxted Guildhall. Photograph: Martin Bridge

THAXTED GUILDHALL TOWN STREET THAXTED ESSEX

Tree-ring Analysis of Oak Timbers

Martin Bridge and Cathy Tyers

NGR: TL 61139 30953

© Historic England

ISSN 2059-4453 (Online)

The Research Report Series incorporates reports by Historic England's expert teams and other researchers. It replaces the former Centre for Archaeology Reports Series, the Archaeological Investigation Report Series, the Architectural Investigation Report Series, and the Research Department Report Series.

Many of the Research Reports are of an interim nature and serve to make available the results of specialist investigations in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation. Where no final project report is available, readers must consult the author before citing these reports in any publication.

For more information write to Res.reports@HistoricEngland.org.uk or mail: HistoricEngland, Fort Cumberland, Fort Cumberland Road, Eastney, Portsmouth PO4 9LD

Opinions expressed in Research Reports are those of the author(s) and are not necessarily those of Historic England.

SUMMARY

Cores from 20 timbers and a slice from another timber taken for this study were analysed along with seven timbers sampled in the early 1990s. A total of 20 dated series were combined into a site master dating to the period AD 1339–1422, with an additional sequence independently dated to AD 1272–1334.

One timber retained complete sapwood and was from a tree felled in the very early spring of AD1419. It appears that most of the dated samples form a coherent group, most likely felled at about the same time, although the dates of the final measured rings demonstrate that they cannot all have been felled at exactly the same time and some must have been felled in the 1420s at the earliest. The likely felling date range of AD 1421–53, modified to AD 1428–53 in light of one sample retaining the ring for AD 1428, and this not being the final ring, can be applied to most of the dated timbers.

CONTRIBUTORS

Martin Bridge and Cathy Tyers

ACKNOWLEDGEMENTS

We would firstly like to thank Alan Gant, custodian at the Guildhall, for his help with access arrangements and Lewis Merle for help and advice on the logistics of accessing the building. We would also like to thank David Andrews for making available his unpublished report on the building and supplying plans from the Essex County Council Archives. We are also very grateful to Ian Tyers who generously made available his data collected in the early 1990s. Finally, we would like to thank Trudi Hughes, Historic England Heritage at Risk Surveyor for commissioning the work, and Shahina Farid and Alex Bayliss, both of HE Scientific Dating Team, for their valuable contributions to this report

ARCHIVE LOCATION

The Historic England Archive The Engine House Fire Fly Avenue Swindon SN2 2EH

HISTORIC ENVIRONMENT RECORD

Essex Historic Environment Record Historic Environment Specialist Team Place Services County Hall Chelmsford Essex CM1 1QH

DATE OF INVESTIGATION 2020–1

CONTACT DETAILS
Martin Bridge
Oxford Dendrochronology Laboratory
Mill Lane
Mapledurham
Oxfordshire RG4 7TX
marbrdg@aol.com

Cathy Tyers
Historic England
4th Floor
Cannon Bridge House
25 Dowgate Hill
London EC4R 2YA
cathy.tyers@historicengland.org.uk

CONTENTS

Introduction	1
Methodology	1
Ascribing felling dates and date ranges	
Results	
Discussion	
References	5
Tables	7
FiguresAppendix	21
r r	

INTRODUCTION

The Guildhall is situated in the centre of Thaxted (Fig 1) and is listed at Grade I (LEN 1112905 here). The list description suggests that it was built between AD 1390 and 1410 and mentions it as being related to a Cutler's Guild. A limited programme of dendrochronology undertaken the early 1990s (Tyers and Hibberd 1993), however, suggested that it contained timbers felled in the mid/late-fifteenth century, and recent research indicates it is likely to have been a moot hall (Andrews 2019 unpubl). The building has been the subject of various campaigns of repair, alteration, and restoration including in the early eighteenth century, in about 1910, and in 1978. Further repairs were being undertaken at the time of this study.

The building is timber-framed and plastered with an exposed frame, red plain tile double-hipped roofs, three storeys, and a cellar. The ground floor forms an open flagged market area with an open timber ceiling, and heavy cross beams are supported on a great centre post. The two upper storeys are jettied on three elevations with moulded bressumers and curved brackets. The first floor has arcading of two-centred arches. The roofs are of simple crown-post form and were originally gabled onto Town Street.

There is some confusion over the orientation of the building, with plans in the Essex County Council archives having a north point suggesting that the site is aligned north—south with the front of the building on the south side, and this orientation was used in the field when recording the sampling positions, but it was subsequently found that the front is located to the south-east, so there is about 45° between 'site north' and true north.

METHODOLOGY

An assessment of the timbers for dendrochronological study sought accessible oak timbers with more than 50 rings and where possible traces of sapwood, although slightly shorter sequences are sometimes sampled if little other material is available. Those timbers judged to be potentially useful were cored using a 16mm auger attached to an electric drill. The cores were labelled and stored for subsequent analysis. In addition, the ring-width data obtained in the early 1990s was made available by Ian Tyers.

The cores were polished on a belt sander using 80 to 400 grit abrasive paper to allow the ring boundaries to be clearly distinguished. The samples had their treering sequences measured to an accuracy of 0.01mm, using a specially constructed system utilising a binocular microscope with the sample mounted on a travelling stage with a linear transducer linked to a PC, which recorded the ring widths into a dataset. The software used in measuring and subsequent analysis was written by Ian Tyers (2004). Cross-matching was attempted by a combination of visual matching and a process of qualified statistical comparison by computer. The ringwidth series were compared for statistical cross-matching, using a variant of the Belfast CROS program (Baillie and Pilcher 1973). Ring sequences were plotted on the computer monitor to allow visual comparisons to be made between sequences.

This method provides a measure of quality control in identifying any potential errors in the measurements when the samples cross-match.

In comparing one sample or site master against other samples or chronologies, *t*-values over 3.5 are considered significant, although in reality it is common to find demonstrably spurious *t*-values of 4 and 5 because more than one matching position is indicated. For this reason, dendrochronologists prefer to see some *t*-values in the range of 5, 6, and higher, and for these to be well replicated from different, independent chronologies with both local and regional chronologies well represented, except where imported timbers are identified. Where two individual samples match together with a *t*-value of 10 or above, and visually exhibit exceptionally similar ring patterns, they may have originated from the same parent tree. Same-tree matches can also be identified through the external characteristics of the timber itself, such as knots and shake patterns. Lower *t*-values however do not preclude same-tree derivation.

Ascribing felling dates and date ranges

Once a tree-ring sequence has been firmly dated in time, a felling date, or date range, is ascribed where possible. With samples which have sapwood complete to the underside of, or including bark, this process is relatively straightforward. Depending on the completeness of the final ring (ie if it has only the spring vessels or early wood formed, or the latewood or summer growth) a precise felling date and season can be given. If the sapwood is partially missing, or if only a heartwood/sapwood transition boundary survives, then an estimated felling date range can be given for each sample. The number of sapwood rings can be estimated by using an empirically derived sapwood estimate with a given confidence limit. If no sapwood or heartwood/sapwood boundary survives then the minimum number of sapwood rings from the appropriate sapwood estimate is added to the last measured ring to give a *terminus post quem* or felled-after date.

A review of the geographical distribution of dated sapwood data from historic timbers has shown that a sapwood estimate relevant to the region of origin should be used in interpretation, which in this area is 9–41 rings (Miles 1997). It must be emphasised that dendrochronology can only date when a tree has been felled, not when the timber was used to construct the structure or object under study.

RESULTS

A total of 21 cores and one *ex situ* cross-sectional slice were obtained from various elements of this building (Table 1a; Figs 2–11). One of the cores (txgh20) and the slice (txgh21) were from the sole plate at the front of the open covered market area (site south) and are presumed to be relatively modern replacements on the basis of known repair phases. One timber (txgh10) was cored twice in an attempt to maximise the number of rings and sapwood obtained. Another sample (txgh05) had approximately 35 rings but fractured in several places and so was discarded from further analysis. Sample txgh15 contained a band of very narrow rings which could not be distinguished with certainty, so only the inner section was used in the

analysis. The approximate number of rings, including the narrow band has been added after this, which reaches the heartwood/sapwood boundary, resulting in a generous felling date range to take account of the unknown number of rings in the narrow band. A number of series were shorter than would normally be considered suitable for reliable dating purposes (at least 50 rings preferred) but, given the number of samples obtained, some of these were included in the analysis. Also included in this analysis were ring-width data from seven timbers (Table 1b) taken in the early 1990s when access for sampling purposes was restricted. The measured ring-width series are presented in the Appendix.

Mean ring-width series were calculated for the two timbers which had been sampled twice before further analysis: txgh10 (txgh10a and txgh10b crossmatching with a *t*-value of 10.7 with 50 years overlap) and GRSPmean (GRSP and GRSP2 cross-matching with a *t*-value of 12.9 with 125 years overlap).

The ring-series from 20 timbers crossed-matched (Table 2). Many of these had overlaps of less than 50 rings, but as they were from an integral structure, and visual matches were good, the matches were considered acceptable. These were combined to form an 84-ring site master chronology, TXTGHt20. This has been dated to the period AD 1339–1422 (Table 3). The ring-width series from the six other measured timbers were compared individually with an extensive database of reference chronologies for oak, resulting in the dating of the inner part of core txgh15i to the period AD 1272–1334 (Table 4).

Two of the samples originally analysed in the early 1990s remain undated (2STP and GRSPmean), as does one of the studs in the partition wall (txgh09) which may have anyway been re-used. Sample txgh12, with only 31 rings, also remains undated. Neither of the two samples from the front sole plates were dated (txgh20 and txgh21), so no dating evidence is available for these later replacement timbers. One timber, tentatively dated in the early 1990s, has been firmly dated at a different position, made possible by the more extensive sampling undertaken for this study and the much larger number of reference chronologies for the area now available.

DISCUSSION

One timber (txgh04) retained complete sapwood and was from a tree felled in the very early spring of AD 1419. Most other samples retained their heartwood/sapwood boundaries and five had some sapwood rings. It appears that the dated samples form a relatively coherent group (Fig 12), most likely felled at about the same time, although it is clear that they cannot have all been felled at exactly the same time as txgh04 was felled in AD 1419 and txgh07 and 2ETB have last measured rings of AD 1421 and AD 1422 respectively.

The dated timbers have been sub-divided into the separate areas of the building sampled (Fig 13) to ascertain if any clear differences in date could be detected. There are clearly no striking differences in the date profiles of the groups, but perhaps it took a while for enough timbers to be gathered for this extensive building with felling having been carried out over a number of years and some timbers being

stockpiled. The variation in felling date ranges for the individual timbers (txgh08: AD 1411–43 to txgh07: AD 1430–62), along with the precise felling date identified for one timber (txgh04) of spring AD 1419 suggest that felling could have extended over a number of years towards the middle of the first half of the fifteenth century.

It is notable that the partition wall between the Small Room and the Council Chamber on the first floor contains a number of studs, some of which have mortices and trenches that do not relate to their current position, and at least some of which are likely to be re-used. The two dated by dendrochronology, however, appear to be contemporaneous with the rest of the main structure. Richard Till, author of 'The cutlers of Thaxted 1350–1420' (Till 2018) suspects that construction was more likely in the early part of the date range (Till pers comm) and notes that the Cutler's Guild was at its strongest in the second quarter of the fifteenth century, but that a number of nearby properties were in a poor state of repair and being replaced at around the same time, perhaps providing some of the re-used timbers.

All the timbers used appear to be of local origin, as indicated by the sites against which they match most strongly.

REFERENCES

Andrews, D, 2019 unpubl *Thaxted Guildhall: a report for Historic England*, Heritage Conservation Rep

Arnold, A.J., Howard, R.E., and Tyers, C., 2008 Apethorpe Hall, Apethorpe, Northampstonshire, Tree-ring Analysis of Timbers, English Heritage Res Dept Rep Ser, 87/2008

Arnold, A.J., and Howard, R. E., 2015 *The Abbot's Lodging and Corridor, Coggeshall Abbey, Essex, Tree-ring Analysis of Timbers*, Historic England Res Rep Ser, **27/2015**

Baillie, M G L, and Pilcher, J R, 1973 A simple cross-dating program for tree-ring research, *Tree Ring Bulletin*, **33**, 7–14

Bridge, M C, 2020 unpubl *The tree-ring dating of Woodbarns Farmhouse, Knowl Green, Belchamp St Paul, Essex*, Oxford Dendrochronology Lab Rep, **2020/34**

Bridge, M C, and Dobbs, C, 1996 Tree-ring studies on the Tudor warship *Mary Rose*, in *Tree Rings, Environment and Humanity* (eds J S Dean, D M Meko, and T W Swetnam), 491–6, Arizona

Bridge, M C, and Miles, D, 2015 Tree-ring Dates, Vernacular Architect, 46, 102–7

Bridge, MC, and Miles, D, 2016 Tree-ring Dates, Vernacular Architect, 47, 87–92

Bridge, M C, and Miles, D, 2017 Tree-ring Dates, Vernacular Architect, 48, 108–16

Bridge, M C, and Tyers, C, 2019 *The Guildhall, Guildhall Street, Bury St Edmunds, Suffolk: tree-ring dating of the roof and entrance door*, Historic England Res Rep Ser, **41/2019**

Haddon-Reece, D, Miles, DH, and Munby, JT, 1990 Tree-Ring Dates, *Vernacular Architect*, **21**, 46–50

Howard, R E, Laxton R R, and Litton, C D, 1998 Tree-ring analysis of timbers from Chicksands Priory, Chicksands, Bedfordshire, Anc Mon Lab Rep, 30/98

Miles, D H, 1997 The interpretation, presentation, and use of tree-ring dates, *Vernacular Architect*, **28**, 40–56

Miles, DH, and Worthington, MJ, 2000 Tree-ring Dates, *Vernacular Architect*, **31**, 90–113

Miles, D H, Worthington, M J, and Bridge, M C, 2009 Tree-ring dates, *Vernacular Architect*, **40**, 122–31

Till, R, 2018 The cutlers of Thaxted 1350–1420, Local Historian, Oct 2018

Tyers, I, 1990 Tree-ring Dates, Vernacular Architect, 21, 45–6

Tyers, I, 1997a Tree-ring analysis of seven buildings in Essex, ARCUS Rep, 292

Tyers, I, 1997b Tree-ring analysis of a carved cupboard door thought to show Henry VIII with a Tudor Rose and an Aragon Pomegranate, ARCUS Rep, 378

Tyers, I, 1998 Tree-ring analysis of St Martin's Church, Colchester, Essex, ARCUS Rep, **366**

Tyers, I, 2000 Tree-ring analysis of oak timbers from the Prior's House, Castle Acre, Norfolk, Anc Mon Lab Rep, 46/2000

Tyers, I, 2004 Dendro for Windows Program Guide 3rd edn, ARCUS Report, 500b

Tyers, I, 2011 The tree-ring analysis of 22 timber framed buildings in Coggeshall Essex, Dendro Co Rep, 39

Tyers, I, and Hibberd, H, 1993 Tree-ring Dates Vernacular Architect, 24, 50-4

Tyers, I, Andrews, D, and Stenning, D, 2003 Tree-ring Dates *Vernacular Architect*, **34**, 101–2

TABLES

Table1a: Details of the tree-ring samples taken from Thaxted Guildhall, Thaxted, Essex in 2020

Sample	Location	Number of rings	Date of	Sapwood	Mean ring	Mean	Felling date
No			sequence		width	sensitivity	range(AD)
			(AD)		(mm)		_
txgh01	Collar purlin	58	1361-1418	h/s	1.97	0.19	1427-59
txgh02	Rear brace from king post to collar purlin	38	1366-1403	h/s	2.46	0.28	1412-44
txgh03	Wallplate, right hand side, in front of tiebeam	43	1376–1418	2+10NM	2.80	0.19	1428-57
txgh04	Central valley wallplate at front of building	39	1380-1418	18¼C	2.41	0.24	spring 1419
txgh05	Left hand side front wallplate	c35*	-	h/s	NM	-	-
txgh06	Left hand side, side wallplate	49	1368-1416	h/s	2.72	0.22	1425-57
txgh07	Left hand side central tiebeam	50	1372-1421	h/s	1.99	0.18	1430-62
txgh08	Small Room: first stud in from door (partition wall to Council Chamber)	65	1339–1403	1	1.65	0.28	1411–43
txgh09	Small Room: second stud in from door (re-used?)	50	-	h/s	1.48	0.18	-
txgh10a	Small Room: second ceiling joist rear of partition wall	50	1355–1404	-	1.79	0.22	-
txgh10b	ditto	53	1355-1407	h/s	1.92	0.26	-
txgh10	ditto a and b combined	53	1355-1407	h/s	1.85	0.23	1416-48
txgh11	Small Room: third ceiling joist rear of partition wall	47	1365–1411	1	1.70	0.22	1419–51
txgh12	Small Room: seventh ceiling joist rear of partition wall	31	-	h/s	2.15	0.18	-
txgh13	West door jamb - post	48	1363-1410	h/s	2.39	0.19	1419-51
txgh14	Left hand side, first post from back wall	69	1341-1409	h/s	2.33	0.26	1418-50
txgh15i	Left front corner post – inner rings	63 +c60-75NM	1272-1334	+h/s	2.55	0.24	c1403-50
txgh16	Braced transverse beam, left hand side	54	1366-1419	h/s	1.88	0.24	1428-60
txgh17	First joist behind transverse beam	49	1357-1405	h/s	2.27	0.22	1414-46
txgh18	Righthand side, first post in from RHS front	56	1361-1416	h/s	3.10	0.20	1425-57
txgh19	Right hand side, rear post (supporting brace to	53	1360-1412	h/s	2.48	0.18	1421-53

\perp
1,
\simeq
\sim
=

	transverse beam)						
txgh20	Left hand side front sole plate	52	-	-	3.69	0.19	-
txgh21	Slice – ex situ right hand side front sole plate	84	-	-	2.28	0.25	-

Table1b: Details of the tree-ring samples taken from Thaxted Guildhall, Thaxted, Essex by Ian Tyers in the 1990s

GECP	Ground Floor, east central post	42	1369-1410	?h/s	1.84	0.22	?1419–51
GNWP	Ground Floor, north-west post	65	1342-1406	?h/s	3.33	0.22	?1415–47
GRSP	Ground Floor rear storey post	125	-	-	1.53	0.12	-
GRSP2	ditto	125	-	-	1.53	0.13	-
1JOIST	First Floor, north-east room joist	55	1357–1411	?h/s	1.71	0.19	?1420-52
1ETP	First Floor, north-east room, east top plate	62	1357-1418	3	2.67	0.24	1424-56
2ETB	Second Floor, east tiebeam	64	1359-1422	2	1.89	0.23	1429–61
2STP	Second Floor, south top-plate	56	-	-	1.50	0.18	-

Key: h/s = heartwood/sapwood boundary; *= core fractured; NM = not measured; 1/4C = complete sapwood, felled the following spring

17-2021

Table 2: Cross-matching between the dated samples included in the site master chronology (TXTGHt20). Values of t above 3.5 are statistically significant. Note the number of years of overlap (not shown) is below 50 rings in most cases

									t	– value	es								
Sample	txgh02	txgh03	txgh04	txgh06	txgh07	txgh08	txgh10	txgh11	txgh13	txgh14	txgh16	txgh17	txgh18	txgh19	GNWP	GECP	1JOIST	1ETP	2ETB
txgh01	2.6	6.6	4.6	4.5	4.1	4.8	4.8	4.9	2.1	6.6	2.6	2.0	2.7	2.5	1.9	3.3	3.5	2.9	4.5
txgh02		1.6	2.9	5.0	3.9	5.5	3.9	6.0	2.6	3.8	5.2	4.1	4.9	3.8	1.5	5.0	4.3	2.5	3.3
txgh03			2.9	4.7	3.2	3.2	2.4	2.4	2.3	2.1	1.6	2.3	2.5	1.4	2.0	2.4	2.0	1.1	3.2
txgh04				3.3	3.1	2.5	3.2	4.4	1.4	4.0	3.0	1.2	2.6	2.0	2.1	2.5	1.6	2.6	4.5
txgh06					4.4	4.7	3.0	5.1	2.5	2.7	3.4	3.8	3.6	4.7	2.1	5.2	3.7	3.2	2.9
txgh07						5.3	4.9	3.8	3.1	4.0	4.7	2.5	3.6	3.1	2.5	2.5	1.6	3.4	4.9
txgh08							3.8	5.0	2.3	5.9	4.9	2.3	3.9	4.8	1.1	5.2	2.8	2.3	3.7
txgh10								7.1	2.8	4.4	3.1	3.0	2.3	1.7	3.4	2.1	3.6	4.5	4.4
txgh11									2.6	3.7	4.9	1.8	1.9	3.2	2.1	4.3	4.0	3.9	5.3
txgh13										3.5	3.3	2.8	2.2	1.9	6.8	2.7	2.6	0.9	2.9
txgh14											4.5	2.2	5.6	2.7	3.9	2.9	3.9	2.4	5.0
txgh16												2.8	4.3	3.9	2.8	3.6	2.4	3.3	4.7
txgh17													3.1	1.5	4.3	2.3	2.0	2.4	2.6
txgh18														3.1	1.9	3.6	4.8	1.1	2.9
txgh19															2.4	8.7	1.9	1.1	2.4
GNWP																2.7	1.0	0.2	4.1
GECP																	2.5	1.3	3.5
1JOIST																		2.1	1.4
1ETP																			2.3

Table 3: Dating evidence for the site chronology TXTGHt20, AD 1339–1422

Source region	Chronology:	Publication reference:	Filename:	Span of	Overlap	<i>t</i> -value
				chronology(AD)	(years)	
Northamptonshire	Apethorpe Hall, Apethorpe	Arnold et al 2008	APTASQ01	1292-1639	84	9.2
Essex	Thaxted Church	Tyers 1990	THAXTED2	1345-1526	78	7.8
Essex	Red Lion Hotel, Colchester	Bridge and Miles 2017	REDLIONC	1287-1475	84	7.7
Essex	Ashdon Street Farm, Ashdon	Bridge and Miles 2015	ASHDONXW	1353-1467	70	7.6
Hampshire	Mary Rose 'original' timbers	Bridge and Dobbs 1996	ORIGINAL	1334-1503	84	7.3
Essex	Netteswellbury barn, Harlow	Tyers 1997a	NETTLESB	1245-1439	84	7.3
Essex	Woodbarns Farm, Belchamp St Paul	Bridge 2020 unpubl	WOODBN1	1346-1416	71	7.3
Object	Henry VIII cupboard door	Tyers 1997b	OS0046	1334-1469	84	7.3
Essex	9 Market End, Coggeshall	Tyers 2011	C09MET04	1230-1422	84	7.0
London	Outer Gates, Byward Postern Sally	Bridge and Miles 2017	ToLBx2	1339-1446	84	7.0
	Port, Tower of London					

Table 4: Dating evidence for the inner part of sample txgh15i, AD 1272–1334

Source region	Chronology:	Publication reference:	Filename:	Span of	Overlap	<i>t</i> -value
				chronology(AD)	(years)	
Essex	St Martin's Church, Colchester	Tyers 1998	STMARTIN	1218-1349	63	6.9
Oxfordshire	20 Bell St, Henley	Miles et al 2009	HENLEY5	1188-1324	53	6.7
Suffolk	Bury St Edmunds Guildhall	Bridge and Tyers 2019	BURYGDHL	1263-1376	63	6.3
Essex	Coggeshall Abbey	Arnold and Howard 2015	COGASQ01	1225-1354	63	6.2
Essex	Normans Hall, Wakes Colne	Tyers et al 2003	NORMHLL	1229-1368	63	6.2
Norfolk	Castle Acre Priory	Tyers 2000	CAP-LOW	1237-1356	63	6.0
Bedfordshire	Chicksands Priory	Howard <i>et al</i> 1998	CHKSPQ01	1200-1541	63	6.0
Oxfordshire	The Great Barn, Lewknor	Haddon-Reece et al 1990	LEWKNORx	1188-1343	63	5.9
Hampshire	The Priory, Odiham	Miles and Worthington	ODIHMPRY	1207-1448	63	5.9
		2000				
Suffolk	Great Bricett Hall	Bridge and Miles 2016	GTBRCTT1	1119-1326	55	5.9

FIGURES

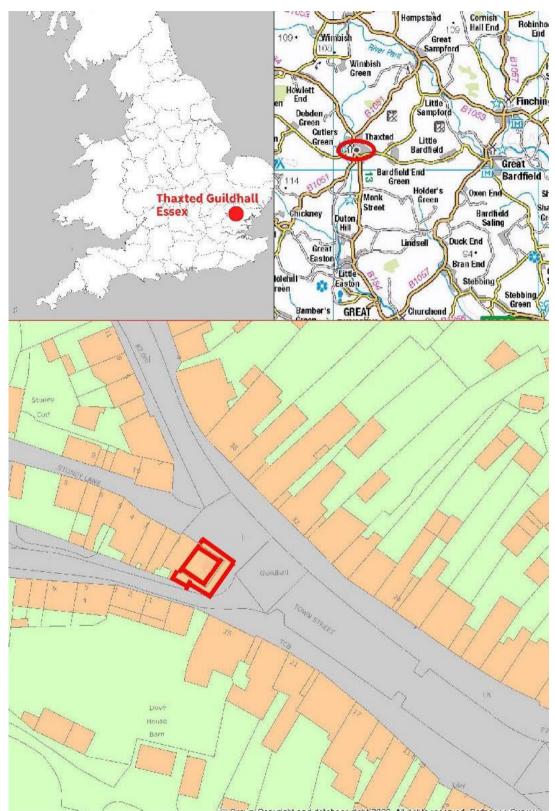


Figure 1: Maps to show the location of Thaxted Guildhall in Essex, marked in red. Scale: top right 1:150,000, bottom 1:750 © Crown Copyright and database right 2022. All rights reserved. Ordnance Survey Licence number 100024900

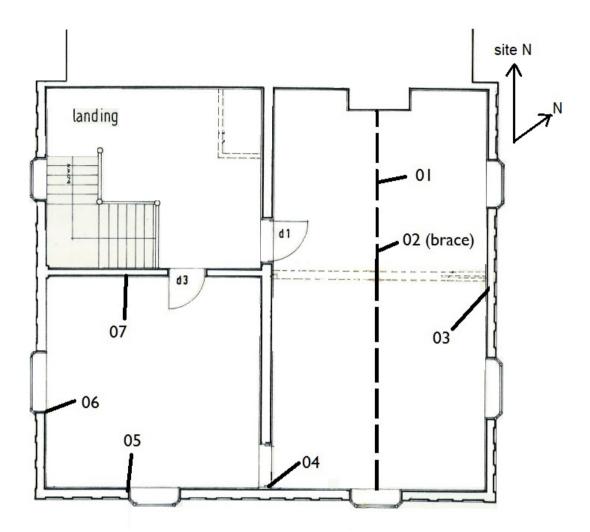


Figure 2: Second-floor plan showing the approximate positions of timbers sampled for dendrochronology (adapted from Essex County Council plans drawn by R Crowe, 1974)

Figure 3: Photograph of the east side of the second floor looking north, showing the timbers sampled for dendrochronology (photograph Martin Bridge)

Figure 4: Photograph of the south (front) end of the central valley wallplate showing the position of coring through complete sapwood (photograph Martin Bridge)

Figure 5: Photograph of the west side of the second floor, looking west, showing timbers sampled (photograph Martin Bridge)

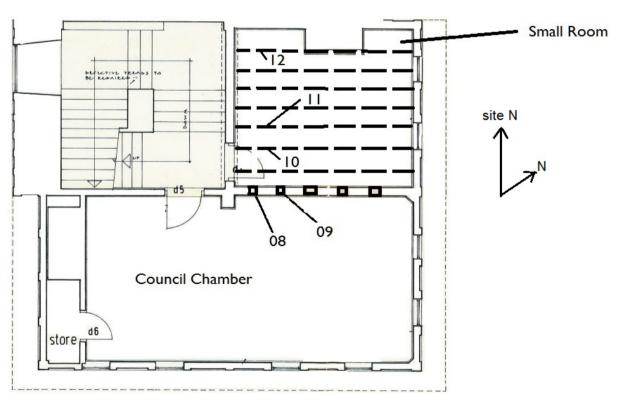


Figure 6: First-floor plan showing the approximate positions of timbers sampled for dendrochronology (adapted from Essex County Council plans drawn by R Crowe, 1974)

Figure 7: Photograph of the wall separating the Small Room and the Council Chamber on the first floor, showing some of the timbers sampled for dendrochronology (photograph Martin Bridge)

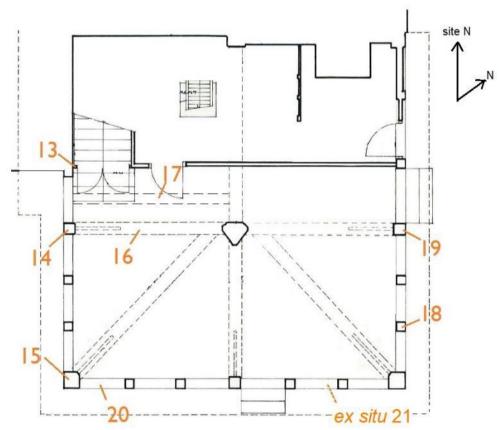


Figure 8: Ground-floor plan, showing positions of the timbers sampled for dendrochronology (adapted from Essex County Council plans drawn by R Crowe, 1974)

Figure 9: Photograph looking west showing some of the timbers sampled from the covered market area (photograph Martin Bridge)

Figure 10: Photograph of the right-hand side of the covered market area showing timbers sampled for dendrochronology (photograph Martin Bridge)

Figure 11: Photograph of the front left side of the covered market area, showing the sill plate sampled for dendrochronology (txgh20) (photograph Martin Bridge)

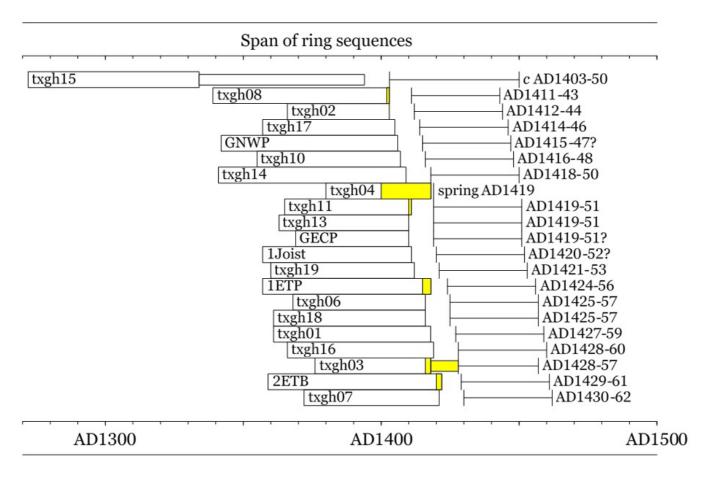


Figure 12: Bar diagram showing the relative positions of overlap of the dated samples, along with their individual interpreted felling date or felling date range, sorted by felling date/date range. White bars represent heartwood rings; yellow bars represent sapwood rings; narrow sections of bars represent additional unmeasured rings

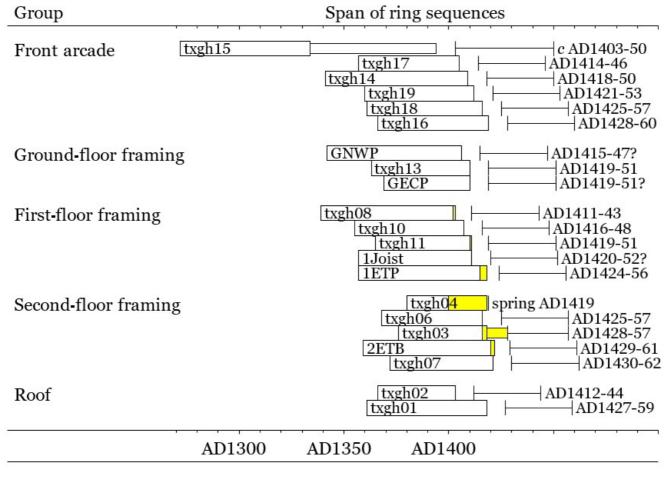


Figure 13: Bar diagram showing the relative positions of overlap of the dated samples, along with their individual interpreted felling date or felling date range, sorted by area and felling date/date range. White bars represent heartwood rings; yellow bars represent sapwood rings; narrow sections of bars represent additional unmeasured rings

APPENDIX

Ring width values (0.01mm) for the sequences measured

a) Data from 2020

txgh	01								
161	212	285	262	242	160	122	128	261	262
181	133	120	126	135	243	285	357	279	375
348	318	291	207	268	295	311	322	198	199
161	154	208	166	170	244	197	225	181	141
143	151	181	218	180	220	164	139	125	95
103	112	154	103	83	102	95	120		
txgh(02								
231	157	303	420	291	220	285	137	136	195
308	294	390	455	391	472	441	291	186	312
280	432	427	357	296	169	110	112	86	126
138	104	203	171	116	89	114	109		
txgh(03								
431	433	460	420	389	457	388	353	299	363
390	368	338	270	360	209	301	274	229	192
304	268	325	190	184	187	213	257	316	278
359	257	260	198	177	169	175	246	144	122
181	134	152							
txgh(04								
185	240	351	343	237	398	310	406	290	230
279	309	213	255	245	213	293	281	326	312
199	143	180	225	216	263	277	194	243	214
129	191	207	218	159	96	155	230	161	
txgh(06								
472	461	352	243	299	210	243	255	288	439
465	429	393	300	368	264	185	274	346	436
431	342	338	184	182	175	171	212	261	236
340	217	228	163	227	208	269	219	359	223
193	233	157	177	241	260	119	132	101	
txgh(07								
110		147	156	275	257	312	244	188	174
197	179	147	173	200	249	271	240	232	192
192	206	126	127	150	179	302	272	211	148
196	194	266	259	286	233	260	229	189	178
168	191	121	139	133	118	210	180	249	181
-			•		-	-			
txgh(08								
252	149	145	128	201	178	234	265	254	241
121	80	210	166	327	258	398	291	292	205
212	245	157	231	388	303	205	179	159	225
267	218	156	128	110	71	111	134	149	218

125 123 111	146 90 72	118 52 59	106 62 100	89 64 95	63 52	116 56	136 70	185 78	161 148
txgh()9								
249	178	132	123	168	204	212	172	152	142
119	226	176	186	221	243	164	147	141	116
98	127	132	173	173	145	128	165	179	134
123	118	142	168	181	143	112	113	151	106
76	93	106	130	179	137	105	94	87	93
txgh	1 Oo								
244	219	258	240	347	286	244	317	351	308
322	197	126	132	234	182	132	175	117	89
322 77	146	218	172	194	180	189	161	160	132
139	178	198	221	195	206	177	118	108	72
61	89	106	164	171	126	96	91	138	165
01	09	100	104	1/1	120	90	91	136	105
txgh	10b								
267	249	284	296	403	299	185	286	295	193
269	160	115	125	245	160	134	195	147	105
90	165	262	366	337	201	242	240	196	173
213	216	238	247	246	270	228	138	126	64
50	86	86	143	131	81	73	57	111	127
132	225	194							
txgh	11								
234	172	129	163	273	233	143	160	81	64
108	150	208	252	286	249	232	238	189	147
192	257	261	221	195	191	167	131	107	95
88	127	125	200	171	150	104	124	164	165
155	195	161	153	195	123	82	121	101	100
_									
txgh									
367	371	351	259	241	223	251	226	170	222
240	213	307	221	153	122	145	170	220	194
244	156	138	155	157	199	186	239	172	186
171									
txgh	13								
388	370	433	515	356	406	468	473	412	594
366	406	267	331	310	259	222	185	190	162
141	146	232	245	275	198	224	154	146	151
150	82	122	194	171	157	203	168	93	133
146	138	138	117	114	91	103	124		
_ 1.	1.4								
txgh		101	0.45	4	450	40.4	460	400	010
417	400	406	365	455	453	404	462	497	319
375	255	395	419	363	311	374	291	349	308
172	320	361	369	264	169	123	178	246	203
133	82	89	72 176	87	148	169	198	155	245
240	269	227	176	247	260	370	321	190	148
108	69	110	70	91	157	132	207	153	142

88	109	124	164	184	126	51	79	77	
txgh	15i								
243	381	348	187	140	350	222	153	135	198
255	309	262	340	373	232	223	373	420	325
	404	489					215		291
363			520	391	318	242		290	
331	177	206	173	198	259	314	266	244	143
166	137	207	325	286	270	192	174	199	281
311	291	248	250	126	182	194	202	136	197
120	130	130							
txgh	16								
451	284	334	321	296	204	157	125	100	148
177	205	272	295	260	185	220	170	104	178
192	228	180	198	241	172	157	139	99	133
191	133	234	222	149	86	158	167	348	223
209	128	192	161	144	152	162	132	118	125
				144	132	102	132	110	123
101	115	140	117						
txgh									
461	281	343	336	216	451	325	277	333	327
336	258	331	317	250	358	247	270	169	244
201	282	320	241	190	182	112	102	141	138
173	151	165	158	107	104	166	114	176	201
177	203	190	135	178	194	167	184	140	
txgh	18								
332	487	447	472	462	443	431	538	480	505
389	426	412	337	349	376	384	436	389	440
	510	361				495	445	361	
390			250	392	329				315
192	136	158	127	184	272	233	310	244	183
172	97	86	155	165	188	125	250	233	216
203	195	237	164	223	222				
txgh									
242	179	349	360	288	277	255	338	371	335
275	205	213	183	148	191	229	242	266	212
263	218	231	251	175	252	278	325	320	271
208	182	228	183	178	222	243	221	267	322
266	239	249	226	299	227	355	239	268	254
172	167	189	220		/	000	20)	200	_0.
1/2	107	10)							
txgh2	20								
357	250	305	227	291	268	250	336	240	315
400	288	216	434	516	509	591	417	509	428
547	375	402	333	396	435	374	395	526	448
395	279	376	327	391	398	290	274	290	440
477	428	333	345	359	359	428	329	354	370
296	268								
txgh									
150	141	338	311	357	480	651	546	397	294
283	225	521	270	434	479	291	282	276	308

```
199 264
         233 339
                  353
                      280
                                    334
                           311
                                266
                                        466
240 254
         205
                                    170 206
             164
                  181
                      186
                           227
                                165
256
   234 299
             186
                  209
                      240
                           194
                                230
                                    261
                                        177
143 225 235 207
                  196
                      246
                           262
                                268 207 71
                                    93
75
    81
         99
             100
                  241
                      89
                           83
                                61
                                         123
150 92
         156 149
                  111
                      106
                           89
                                110 111
                                        104
114 187
         137 76
```

b) early 1990s data from Ian Tyers

1ETF	•								
315	275	334	380	228	432	318	497	534	320
234	188	243	247	238	220	164	97	70	86
115	135	193	166	193	182	354	364	406	546
568	461	466	458	360	229	255	294	278	304
225	520	414	260	186	256	240	275	232	362
229	242	202	148	156	148	145	88	108	89
166	111								
1JOI	СТ								
371	51 184	159	148	86	90	112	149	139	89
98	92	126	96	75	114	84	84	96	107
151	139	147	161	211	191	166	154	204	227
260	238	245	237	211	151	216	153	20 4 191	231
192	232	219	215	226	172	155	212	169	231
181	232	260	178	167	1/2	100	212	109	231
101	202	200	170	107					
2ETE	3								
259	229	136	259	272	171	263	353	210	262
333	311	177	152	111	92	110	154	140	201
152	154	152	140	146	120	197	226	237	288
220	216	189	145	150	137	87	158	151	228
209	250	136	198	185	290	283	302	193	274
190	170	192	186	201	141	109	112	89	100
118	166	173	120						
2STP	,								
183	131	155	160	127	153	153	121	122	131
84	119	111	134	112	120	133 86	112	72	78
84	78	103	80	88	125	125	133	98	76 99
102	76 142	103 154	205	230	140	184	310	98 282	258
308	240	163	190	209	253	205	134	112	116
119	123	162	189	185	180	200	107	114	110
11/	120	102	10)	100	100				

GECP									
159	202	127	153	113	101	128	150	148	221
209	254	212	216	188	128	246	218	269	266
197	153	118	147	120	131	170	217	217	250
245	204	154	155	163	199	154	299	149	203
220	155								
	100								
GNWP									
340	489	286	292	178	190	244	425	365	546
242	476	715	620	639	532	460	479	478	339
630	445	352	369	522	451	490	477	415	350
422	359	388	245	343	308	320	293	290	237
227	191	180	280	314	375	257	250	186	199
175	220	118	151	271	258	221	252	245	155
173	226	229	232	211	236	221	232	243	133
1/3	220	229	232	211					
GRSP									
163	187	175	177	144	138	126	211	194	212
202	199	178	183	190	151	174	148	168	181
138	124	122	125	120	107	100	104	103	94
82	80	98	103	105	110	124	139	130	136
02 125	155	98 201	155	181	158	140	140	177	
123	143	121	126	92	106	96	95	100	146 128
95	103	94	128	166	148	168	93 182	194	128
			221						
213	210	228		189	216	134	142	178	136
202	181	173	163	179	187	171	179	165	176
173	154	122	141	142	161	159	173	177	155
149	146	151	156	149	124	142	129	204	153
154	138	131	147	144	149	183	219	232	173
204	185	161	160	175					
CDCDO									
GRSI 177	225	169	178	143	130	145	205	187	209
214		109							
	205 122		183	173	161	149	117 106	151	158
121		106	136	123	119	107		91 152	100
76	92	98	100	101	115	135	141	152	136
125	151	190	146	161	166	147	139	157	146
138	146	116	129	93	103	87	99	108	123
99	93	92	127	161	165	174	161	192	211
199	218	226	228	188	217	130	152	177	137
197	177	182	150	191	177	170	176	166	167
181	146	112	129	155	151	166	171	170	158
157	146	150	147	150	130	146	133	168	149
153	137	135	145	131	157	207	187	250	176
183	200	184	133	177					

Historic England Research and the Historic Environment

We are the public body that looks after England's historic environment. We champion historic places, helping people understand, value and care for them.

A good understanding of the historic environment is fundamental to ensuring people appreciate and enjoy their heritage and provides the essential first step towards its effective protection.

Historic England works to improve care, understanding and public enjoyment of the historic environment. We undertake and sponsor authoritative research. We develop new approaches to interpreting and protecting heritage and provide high quality expert advice and training.

We make the results of our work available through the Historic England Research Report Series, and through journal publications and monographs. Our online magazine Historic England Research which appears twice a year, aims to keep our partners within and outside English Heritage up-to-date with our projects and activities.

A full list of Research Reports, with abstracts and information on how to obtain copies, may be found on www.HistoricEngland.org.uk/researchreports

Some of these reports are interim reports, making the results of specialist investigations available in advance of full publication. They are not usually subject to external refereeing, and their conclusions may sometimes have to be modified in the light of information not available at the time of the investigation.

Where no final project report is available, you should consult the author before citing these reports in any publication. Opinions expressed in these reports are those of the author(s) and are not necessarily those of Historic England.

The Research Reports' database replaces the former:

Ancient Monuments Laboratory (AML) Reports Series The Centre for Archaeology (CfA) Reports Series The Archaeological Investigation Report Series and The Architectural Investigation Reports Series.